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Solution of the kinetic equation for the deposited energy 
distribution in the power cross section model 

L G Glazov 
High Current Electronics Institute, Akademichesky 4, Tomsk, Russia 

Received.9 December 1993, in final form 22 March 1994 

Abstract. A regular method for finding solutions of the equation for the distribution of energy 
deposited by atomic particles in elastic collisions is developed, using the model of an infinite 
random medium and power cross section. It is shown that in neglecIing threshold energy 
the distribution derivative has a singularity at the target surface. The calculated distributions 
and other functions connected with the problem are given for the case of equal masses of the 
projectile and target atoms. 

1. Introduction 

The present paper is devoted to a new investigation of the classical problem of finding 
the deposited energy distributions for interactions between ions and amorphous or 
polycrystalline targets in .the linear cascade model [l,Z]. Following a, pioneer paper [ l ]  
and a series of later papers [3-6], we adopt the simplest correct analytical model of the 
phenomenon: (i) an infinite isotropic random medium, (U) a power cross section of elastic 
collisions, (iii) neglect of electronic energy losses, and (iv) threshold energy [l]. 

The well known results of solving this problem need to be revised for the following 
reason. It is known that in the adopted model the system of equations for the spatial 
moments of the distribution FD to be found is easily solved, and the problem of constructing 
a good approximation to the distribution FD from a finite number of moments arises [ 1.3.7- 
101. However, no respective regular procedure was found for the function FD, because all 
the methods so far used do not provide good convergence (see, for instance, [1,8]); the 
termination of summing a series, or a recurrent procedure, is not based on any physical 
or mathematical arguments. From the mathematical point of view, this situation arises 
because the function FO is not differentiable, as will be shown below. Therefore, smooth 
function expansions for FD cannot be quickly convergent. Let us introduce the Fourier 
transform fD(k )  of the function FD(z). The function fD(k) decreases too slowly (- k-O 
with 01 6 2) at large k because, in particular, the derivative of FD(z) has a singularity at 
z = 0. This fact (i) provides a relatively high dependence of &(z) on the wing of f D ( k ) ,  
particularly for values of FD(z) close to the target surface z = 0; (ii) makes questionable the 
approximations for FD(z) by functions of which the Fourier transforms decrease too quickly 
(for example, exponentially) when k + 00; and (iii) makes incorrect the methods of finding 
fD(k) for all k.  when only a few first derivatives at k = 0 are known (i.e. constructing 
some approximation for FD(z) from a few first spatial moments). 

An ignorance of,all these factors creates a danger of a non-predictable error when 
building FD by usual methods. This is also reflected in Monte Carlo simulation methods. 
Although Monte Carlo methods generally do not depend on moments analyses, the 
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usual analytical approach nevertheless leads to a choice of differentiable functions for 
approximation of the numerical results, and gives estimates that are too low for the number 
of tests necessary for a correct description of the deposited energy distribution behaviour 
near the target surface. 

In this paper we suggest a regular and, dependable method of solving the kinetic equation 
for the deposited energy distributions in the boundaries of the above-described model. For 
simplicity, we discuss only the case of equal masses of an ion and a target atom. 

2. The method of solving the kinetic equation 

2.1. The kinetic equation for the deposited energy distribution 

The initial equation can be easily derived by the linear cascade theory, and in the adopted 
model can be written in the form [I] 

X [FD(Z, E, 11) - FD(Z, E - T ,  V')] - s(e. e' - ~ F D ( Z ,  T ,  d) ] .  (1) 

Here N is the density of the target atoms; e, e' are the unit vectors in the direction of 
the starting and scattering (or recoili,ng) particle velocities; q = cos 0, q' = cos 8' are the 
respective direction cosines, i.e. e.e' = cos0cos8'-sin0 sinB'cosp', de' = sinO'd0'dq'; 
FD(z,  E, q) is the deposited energy distribution to be found: FD(z, E ,  v) dz is the average 
energy, deposited in the coordinate interval (z, z + dz) during the development of the 
cascade caused by one projectile starting at the plane z = 0 with energy E ,  q = cos0 
being the direction cosine of initial velocity with respect to the z axis; and du(E, T )  is 
the differential (on recoil energy T )  cross section of elastic collisions; further, we use the 
power cross section [I, 2,6]  

du(E, T )  = CE-"'T-'-" dT (2) 

where m = constant is the parameter of the power cross section, 0 < m < 1, C is a 
constant depending on the type of the target and the selected value of m; furthermore, when 
investigating the asymptotic behaviour of the solution we examine the case f 6 m 4 i. 

Equation (1) and the energy conservation condition 

define the function to be found. 
The function FD(z, E, q) can be represented in the following form: 

FD(z, E ,  q) = NCE'-ZmF(zNC/E2m, q) (4) 

where F is a function of dimensionless variables. The possibility of the representation (4) 
can be proved using the well known fact that the nth spatial moment of the function FD 
is proportional to E'+%" [l]. The representation (4) can also be checked by inserting (4) 
into (1). 
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Introducing new dimensionless variables n =~ zWC/E" and t = T / E  we obtain the 
equation determining the function F(x, q): 

x [F(x, q )  -(I - t) '-"F(x/(l  - t)", U')] 
- S(e . e' - &)tl-"F(x/tZ", q')] 

and the condition 
F W  

2.2. Legendre polynomials expansion 

The function F(x, q )  can be expanded in terms of Legendre polynomials: 

The coefficient functions f i  satisfy the following system of equations (1 = 
0,1 ,2 , .  . ., F-1 0): 

1 - - - [ l F l ~ ~ ( x ) + ( l + 1 ) f i + ~ ( x ) ] = ( 2 1 + 1 ) ~  a t-'-'"dt 
ax 

x [Fl (x) -  f i ( G ) ( l  -t)'-"Fl(x/(l - t )")-f i (Ji) t ' -"R(x/ t")] .  

(8) 

For the functions 4, l 2 0 the condition (6) is 

The functions F&) with even and odd I are symmetric and antisymmetric respectively. 

2.3. Equations for the Fourier transfonnS 

We introduce the Fourier transform of the function F(x, q):  

m 
F ( x . q ) = L /  2a -m e"f(k,q)dk 

m 
f (k, q )  = J e-'"F(x, q )  dx. 

-m 

The function f(k, q) also can be expanded in terms of Legendre polynomials: 
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The functions fi  and fi are related by formulae similar to (10) and (11). 
The system (8) leads to a system of equations for the functions f i (k) ,  f-1 0 

1 

- ik[Ifi-l (k) + (1 + I)fi+~(k)] = (21 + 1 )  t-l-'" dt 

x [ f i ( k )  - p r ( W ( 1  - t ) f i ( k ( l  -t)? - S(&)tfi(kt")]. (13) 

The formulae (9) give the boundary conditions for the equations (13): 

fr(0) = 40. (14) 

The functions fu(k) are real and symmetric functions of k, fu+l(k)  being imaginary 
and antisymmebic. 

We note here an interesting numerical observation: each function f i (k)  does not change 
sign in the region k > 0 as far as it was tabulated in the present work, and fi 0 for 
1 = 0 , 4 , 8 ,  ..., fi c 0 for 1 = 2,6,10 ,..., Imfi c 0 for 1 = 1,5,9, ..., Imfi > 0 for 
1 = 3,7,11,. . .. It takes place at least for 1 < 30, m = 1/2  and 1/3, k < 30 and k < 12 
respectively. Unfortunately, attempts to prove a general statement of this kind were not 
successful. 

2.4. Recurrence relations for the spatial moments 

Let us introduce the spatial moments of the functions F ( x ,  a), Fl(x): 
m 

~ " ( 7 )  = 1, x " ~ ( x ,  11) d~ 

F; = s_, x " f i ( x )  dr 

F Y v )  = c ( 2 1 +  l)PI(v)F; 

n = 0,1,2, . . . 
m 

n = 0,1,2, . . . 
m 

n = 0 , 1 , 2  ,.... 
I=O 

The equations (8) give recurrence relations for calculating Fi' 111: 

where ( a h  = r (a  + k) / r (a ) ,  [a] is an integer part of a, B(x ,  y) is a beta function, and 

The formulae (18) provide the possibility of calculating the moments of the distribution 
cp = l ! / p ! ( l  - p ) ! .  

F recursively, with the conditions (9) as starting values: 

FP = 810. (20) 



Deposited energy distribution in the power cross section model 4185 

2.5. The series for the Fourier transform 

Knowing the moments F; one can tabulate the Fourier transform f (k, q): 

A method based upon the Taylor expansion for the Fourier transform was previously used 
in a series of papers [ 11-13] dealing with constructing different damage cascade distributions 
(the energy and momentum deposition profiles and the net recoil density respectively) from 
the spatial moments. By constructing Pad6 approximants to the Taylor series, the authors 
of these papers obtained sequences of approximate expressions for the Fourier transform, 
for which the inverse traniformation can be performed analytically. In the present paper we 
are going to use a more direct method based upon immediate tabulation of the Taylor series 
and the following continuation of the Fourier transform in accordance with analytically 
established asymptotic expressions. The moments and the terms in the series (21) ought 
to be calculated with the maximum available precision to reach as high a value of k as 
possible directly tabulating f (k). 

- 

- 

2.6. Symmetric and antisymmetric parts of the functions 

The function f (k, q )  can be represented in the form 

The real pm fs is a symmetric function of both k and V .  is determined by moments 
with even n, and contains only the terms with even 1 in the Legendre polynomial expansion. 

The imaginary part fA is an antisymmetric function of both k and q (and, respectively, 
it is equal to zero for q = 0), is determined by moments with odd n,  and contains only the 
terms with odd 1 in the Legendre polynomial expansion. 

The functions fs and fA determine the symmetric and antisymmetric parts of the 
distribution F(x, q )  respectively: 

F ( X ,  V )  = F ~ X ,  71) +~F.(x .  7) (23) 

Fs(-x. tl) = Fs(x, 11) 

FA(-x. 11) =   FA(^, V )  FAW. -?I -FA@. ?) 

Fs@. -?) = ~ F s ( x ,  q) 
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2.7. The asymptotic behaviour of the functions for the cases k -+ 00 and x -+0 

By calculating the moments and tabulating the series (21), one can obtain f ( k ,  q) up to 
some value k = ko. Usually one can reach values for f (k, q )  of the order of a few per cent 
of the maximum by this method. One then has to make the correct continuation of the 
Fourier transform in the region k > ko. The precision of this continuation is not very 
important for determining values of F(x, q )  (being found by tabulating (IO)) far away from 
the point x = 0, because af(k)/ak decreases much faster than f ( k ) ;  but it is critical for an 
adequate calculation of F ( x ,  q )  in the case x % 0. 

The function f ( k ,  q) very slowly decreases when k -+ 00; in particular, the function 
F(x ,  q) is not differentiable at x = 0. For example, it is easy to show directly from (8) 
that for odd I and m 1/3 

It is therefore necessary to investigate the asymptotes of the function to be found at k -+ 00 

and x -+ 0 for the correct continuation of the Fourier transform in the region k > ko, and 
for an understanding of the characteristic features of the behaviour of F(x, q) near the target 
surface. 

Note here that the opposite-case asymptotes, i.e. the large-depth decrease of the damage 
profile, were investigated in [14]. 

2.7.1. The case m = 5. The x +O asymptotes. In the case m = f equations (8) are 

- -[I&(x) + (2 + l ) F l + l ( ~ ) ]  = (21 f 1 ) s  r3 l2d t  

1 

I a 
ax 0 

x [ N X )  - f i ( d F q % ( X / ( l  - t ) )  - s(J)n ( X l t ) ] .  

When x + 0, the last term on the right-hand side appears to be the leading one. Let 
us examine the case I = 0, x -+ + O  

- - - x - l / 2  I* e-"'Fo(f) df + x-'j2 1' e-'/2Fo(f) de 

= constant x x-I/* + constant + . . . . 
The function F1 (x) is antisymmetric, FI (0) = 0, and when x 4 +O 

FI ( x )  - constant x x1j2 + constant x x -I-. . . 

and antisymmetrically for x c 0. 
In the same way, for I = 1, x -+ +O we obtain 

1 I* a 
ax 
- [ F o ( x ) + 2 F ~ ( x ) ]  - 3 l  t - 'FI (x / t )d f  = 3  <-'Fl(e)de 

= 3JdWf- 'F1(0d6 - 3 1 '5 - ' 4 ( t )dF .  
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The first integral on the right-hand side is finite, because Fl(C) - cl/’. So when 
x -+ +o 

a 
ax - [Fo(x)  + 2Fz(x)] - constant + constant x xl/’ + . 

and taking into account the.symmetry of the functions F21, we obtain 
- 

~ o ( x )  + Z F ~ ( X )  - constant +constant ~x 1x1 +constant x lxl3P + ~. . . 1x1 -+ 0. 

These formulae can be easily extended on all functions with odd and even I respectively. 
Therefore the antisymmetric functions FU+I - 2/; ne& the target surface, their derivatives 
at x = 0 being infinite; the derivative of any symmetric function Fa abruptly changes sign 
at x = 0. 

2.7.2. The case m = :. Tht~k + CO asymptotes. In the case m = l J2  equations (13) 
become 

- ik [lfi-1 (k) + ( I  + I)fi+l (k)] = (21 + 1) /” t -3/2 dt 

. ,  

I 

0 

x [f,(k) - R ( m ( 1  -t)fi(k(l -~ t ) )  - Pr(Jl)ffi(kt)]. 

When k + W. the last term on the right-hand side appears to be the leading one. Let 
us examine the case 1 = 0, k --t +w: 

We therefore obtain 

f l  (k) - constant x k-3/2 + . . . . k + +CO 

and antisymmetrically fork + -W. 

For1=1,  k + + w :  

“ I  ” I  

and taking into account the symmetry of the functions fr(k)  with even I :  

fo(k) + 2fz(k) - constant x lkl-’ +constant x lkl-5/2 Ikl -+ CO. 

These formulae can be easily extended on aU functions with odd and even 1 respectively. 
So the antisymmetric functions fa+] -. k-”’ when k + +CO; the symmetric functions 
fu~-~constant x Ikl-’ +constant x lkl-5/2 when k + W. . 
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2.7.3. The asymptotes for < m < f. For other values of m the asymptotic forms of the 
functions at x + 0 and k + 00 can be investigated by t,he same method, although the 
formulae are more complicated. The respective results are given below. 

For the functions with odd 1 at x ---f + O  

fi(x) - constant x x1/2m-1/2 + constant x x + . . . 
Fl(x) - constant x x Inx +constant x x + . . . 

113 c m Q 112 
m = 113 

and for the functions with odd 1 at k + +CO: 

fr(k) -constant x k-1/2-’/2m + . . . 
and antisymmetrically for x + -0 and k + -W. 

For the functions with even 1 at x + + O  

fi(x) - constant +constant x x3/6n-1/2 +constant x x ’ / ~ + ’ / ~  + ... 
fi(x) - constant+constant~x’/~+constant xxZInx+constant xx2+ ... 

and for the functions with even I at k + +m: 

fr(k) - constant x k-1/2-3/4m -I- constant x k-1/2m-3/2 + , , , 
and symmetrically for x 4 -0 and k + -m. 

It is necessary to note that the singularity of a F ( x ,  q)lax at x = 0 is caused by 
neglecting threshold energy. 

We thus have dealt with the special case of the singularity at the target surface. It is not a 
new problem. The problem of the discontinuity at the surface has been extensively discussed 
in the literature on electron slowing and energy deposition. The pertinent profiles were found 
by Monte Carlo simulation as early as the 1950s. A discontinuity at the surface was formally 
introduced in [ l  11 for calculating the damage profile in the large ion-to-target-atom mass- 
ratio case. Another type of discontinuity was discussed in [13], devoted to determining the 
net recoil density, which has an x-l’’ singularity at the target surface. These papers used 
modifications of the Pad6 approximants method for constructing distributions with a fixed 
discontinuity. 

2.8. The procedure for solving the kinetic equation 
The following procedure was used for solving the kinetic equation. According to the 
recurrence formulae (18) the moments of the distribution were calculated with the maximum 
available precision (when using 28-decimal- digit precision it is usually enough to calculate 
the moments up to n = 300); the function f (k, q)  and a few of its first derivatives were 
then tabulated using (21) up to some value k = b, where the series can be found with 
enough accuracy. Further, the Fourier transform was continued in the region k > ko 
independently for real and imaginary parts off  (k,  a) by determining constants in asymptotic 
formulae from the condition of the best coincidence near the point k = ko. The symmetric 
and antisymmetric parts of the function to be found were calculated by formulae (24). 
The accuracy of the results was controlled by using different methods for determining 
the asymptotic expansion coefficients and checking the condition of almost full mutual 
compensation of the contributions of symmetric and antisymmetric parts of the distribution 
at large-enough negative x. Except in the small region x = 0 the relative error is of the 
order of 0.1%. A method for a more accurate calculation of F(x = 0, q )  is discussed below. 

113 < m < 1/2 

113 < m < 112 

m = 113 

1/3 Q m < 1/2 
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the region k > ko. 
The behaviour of the zeroth and first angular harmonics of the distribution form = 1/2 

as a function of the coordinate is shown in figure 2. According to general features of the 
asymptotic behaviour of the functions at x --f 0, the function F, ( x )  has an infinite derivative 
and the derivative of the function F&) abruptly changes sign at x = 0. 

Figure 3 shows the characteristic symmetric and antisymmetric parts of the distribution. 
For large-enough negative x they compensate each other with good precision, providing 
small values of the distribution. Taking into account the independence of finding asymptotes 
for their Fourier transforms, it is an additional confirmation of the good accuracy of the 
obtained results. 

-1 J 

Figure 2. Dependences Fa(%) and Fl(x); m = 112. 

Figure 4 demonstrates the functions F ( x ,  T/ )  for normal (v  = 1) and tangential (17 = 0) 
incidence of an ion for m = 112. The results for T/  = 0 cannot be appropriate because 
in this case the model of an infinite medium does not provide a correct description of the 
phenomenon. However, these results are of definite interest from the mathematical point of 
view, because in this case the antisymmetric part of F ( x ,  q )  disappears, and F ( x ,  = 0) 
demonstrates a behavior that is typical for symmetric functions of the problem for m = 1/2 
its derivative abruptly changes sign at x = 0 and the function is characterized by A-like 
behaviour near the target surface. Furthermore, F ( x ,  11 = 0) can be considered as the 
deposited energy distribution in the perpendicular direction for normal incidence. One can 
easily see that in this case any quasi-normal approximations are incorrect. 

The approximations with an exponentially decreasing Fourier transform were mentioned 
above to lead to badly convergent series or recurrent procedures. For comparison with the 
results of the present paper, the author tried Gram-Charlie, Edgeworth series and similar 
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-0.4 -0.2 0.2 0.4 

-I 

Figure 3. Symmetric (I)  and antisymmetric (2) parts of F(x,  q = I); m = 1/2 

8 

I 

\ 
x 

0.4 0.8 

Figure 4. Dependences F ( x .  q )  for tangential and normal incidence; m = 1/2; 11 = 0 (1). q = 1 
(2). 

methods, which are described in detail in [I], wherein Q 20 terms were taken into account 
and it gave qualitatively correct profiles (except for the singularity in the derivative, of 
course). Having high-precision data on the moments of the distribution, one can tabulate 
with enough accuracy 'at least several hundred terms in series of this kind. However, these 
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methods clearly appear to be not regular: beginning from some critical number of terms 
n, taken into account, the sum quickly becomes an oscillating function and cannot be a 
reasonable approximation. As a rule, nEr strongly decreases with decreasing q. For example, 
for usual Gram-Charlie series ncr - 50 - - 100 for q = 1 and na - 10 - -20 for q = 112. 
Some Gram-Charlie curves for m = ~ l / 2 ,  q = 1 are shown in figure 5 for comparison. 

Figure 5. F(+, q = 1) form = 112 (thick full curve) and reapeaive Gram-Charlie expansion 
curyes with 10 proken curve) and 50 (thin full curve) moments taken into ammi (the algorithm 
of calculating ccefficienu is described in detail in appendix B of [I]). 

Finally, figure 6(a) and (b) shows the curves F ( x , q )  for m = 1/2 and m = 1/3 
respectively. All the curves are characterized by a rapid change in the function near the 
surface and an infinite derivative at x = 0. 

4. Calculating F ( z  = 0, p) 

The method of calculating F ( x ,  q )  described above gives a precise result except, perhaps, for 
a small region near the surface x = 0. The following circumstances make less accurate the 
calculation of F ( x  = 0, q )  by Fourier transformation inversion. (i) The Fourier transform 
slowly decreases when k + CO, so the value of F(x = 0, q )  strongly depends upon the 
accuracy of the selection of asymptotes. (ii) A very rapid change in F(x ,  h) near the surface 
creates difficulties for correct numerical calculation. (iii) For small q the function f (k ,  7) 
reaches a desired asymptote at too large a value of k .  In contrast, in the case q x 1, 
fs(k, 7) quickly reaches the desired asymptote, but due to the strong mutual compensation 
of the regions of positive and negative values of fs. one needs too high an accuracy of the 
selection of the asymptotic expansion coefficients. (iv) The accuracy of finding asymptotic 
formulae for fs (determining F ( x  = 0)) is much worse than for fA. This is connected with 
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Pi- 6. Dependences F ( x ,  ‘I) on x form = 112 (U)  and m = 113 (b); ‘I = 0.4 (1). ‘I = 0.6 
(2). ’I = 0.8 (3), ‘I = 1 (4). 

the fact that symmetric function expansions have two leading terms with similar powers of 
k (.-, k-2 ,  - k-512 at m = 112; Y k-1114, - k-3 at m = l/3), which usually strongly 
compensate each other. So it would be more correct to express F(x  = 0, q )  in terms of 
some antisymmetric functions of the problem. 

These circumstances can provide a relative error of the order of 20% when calculating 
F ( x  = 0, q ) ,  if the spatial moments are tabulated,with a precision of 16-28 decimal digits. 
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Although it is not too much compared with the general change in F(x,  q )  in the surface 
region, it sharply contrasts with the high precision in determining F ( x ,  q) at other points. 
On the other hand, a correct calculation of F ( x ,  q )  is very important due to well known 
applications in sputtering theory, and so on. It is therefore necessary to build an independent 
method of calculating F(x = 0, q), which ought to be free of the defects mentioned above. 

Integrating the system of equations (S), we obtain 

m 

W l - I ( O )  +(I + l)fi+I(O) = (2 + 1 ) i  f i ( x ) h  

I 
t-I-’”dt[l - fi(m(1 - t )  - e(+‘+] x l  

(21 + l)4(l+/mfi(x)dx 0 

and, after multiplying by q ( q )  and summing over I: 

a? 

vF(x = 0. v) = E’(21 + 1)fi(V)ZI(1) f i ( x )  dX. 

The sum on the right-hand side includes only the terms with odd I. Formally it is 
provided by the fact that lo(1) = 0 and for even I z 0 

rm 1 rm 

according to the condition (9). 
Let us introduce the function 

Y(x7 7) = (21 + I ) f i ( r l ) W ) f i ( X ) .  
1 4 . 3 ,  ... 

Its Fourier transform 

$k tl) = E (21 + l ) f i ( q ) W ) f i ( k )  
k1.3. ... 

is an imaginary and antisymmetric function of k, $(O, q )  = 0, so one can write 

In this way we obtain the following formula for F ( x  = 0.17): 

F(x  = 0, q )  = k-’ Im $(k, q )  dk. 

The tabulation of $(k ,  q) at k < can be reduced (accordin,. to (21)) to summing a 
series 
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7 
0 

0.5 0.6 0.7 0.8 0.9 1 

Figure 7. FD(Z = 0. E .  p ) l N S ( E )  form = 112 ( I )  and m = 113 (2). 

The continuation on the region k > ko can be made by the same method as for other 
antisymmetric functions of the problem. 

Use of (U) and (26) for calculating F ( x  = 0, q )  provides the following advantages. (i) 
The region k > ko gives a small contribution into the integral (25) due to a faster decrease 
at large k of the function being integrated, than when calculating Fourier transformation 
inversion. Respectively, the error connected with uncertainties in asymptotic expansion 
coefficients becomes smaller. (ii) Continuation in the region k > ko is made for the 
antisymmetric function @ ( k ,  q);  it also provides better accuracy. 

Figure 7 demonstrates the curves 

FD(Z = 0, E ,  q ) / N S ( E )  = (1 - m)F(x = 0, q) 

for 112 6 q < 1 and m = 112,113, 

S(E) = Tdm = E2”/(1 - m)NC s 
being the stopping power; the relative error is not higher than about 1%. 

5. Conclusion 

A regular method has been proposed for solving the kinetic equation for the spatial 
distribution of energy deposited in a collision cascade caused by a projectile ion in an 
amorphous or polycrystalline target. The model of an infinite medium and power cross 
section of elastic collisions is used’ for a description of the phenomenon. The method is 
based upon finding the Fourier transform of the distribution and provides the possibility of 

~ 

~ 



4196 L G Glazov 

obtaining a kinetic equation solution with arbitrary accuracy. The results of tabulating the 
deposited energy distribution and other characteristic functions connected with the problem 
have been presented for the case of equal masses of the projectile ion and target atoms. 

The asymptotic behaviour of different functions connected with. the problem has been 
investigated. It has been shown, in particular, that in neglecting a threshold energy, the 
derivative of the distribution has a singularity at the target surface for m > 1/3. It makes 
incorrect the usual methods of finding the distribution based on constructing a smooth 
approximation from a few first spatial moments. The solution obtained demonstrates a very 
fast change near the target surface. 

A special method of calculating the value of the distribution at the target surface has 
been examined. The method provides higher accuracy for fixed precision of tabulating 
spatial moments. The respective results have been given. 
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